Surname	Centre Number	Candidate Number
Other Names		2

GCE A level

1075/01

BIOLOGY/HUMAN BIOLOGY - BY5

P.M. MONDAY, 17 June 2013

1 3/4 hours

For 1	Examiner's use	only
Question	Maximum Mark	Mark Awarded
1.	8	
2.	16	
3.	12	
4.	15	
5.	11	
6.	8	
7.	10	
Total	80	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The quality of written communication will affect the awarding of marks.

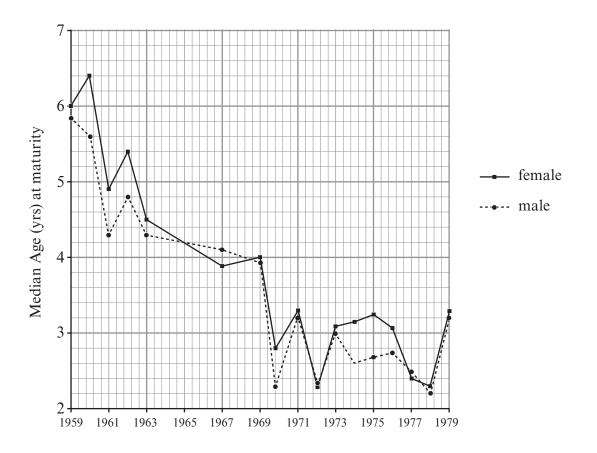
Disti	inguish between the following pairs of biological terms.		Examine only
(a)	seminiferous tubule and seminal vesicle;	[2]	
•••••			
(b)	DNA ligase and DNA polymerase;	[2]	
(c)	gene and allele;	[2]	
(d)	primary succession and secondary succession.	[2]	

PMT

BLANK PAGE

© WJEC CBAC Ltd. (1075-01) Turn over.

2. The Grand Banks is an area of sea off the coast of Newfoundland in Canada. It was once one of the most productive fishing grounds in the world for Atlantic cod.


The cod was fished heavily for about 50 years.

About 60% of the total cod population of reproductive age was harvested annually.

Cod fishing in the Grand Banks was closed in 1992 but by then the population was less than 1% of what it had been.

Cod grow evenly throughout their life.

The cod that remained when fishing was finally closed were much smaller and grew more slowly than the cod that lived in the Grand Banks several decades previously.

Graph to show the median age of cod at sexual maturity in the same location during the time of heaviest fishing.

PMT

075	0005	
10	0	

	1960.

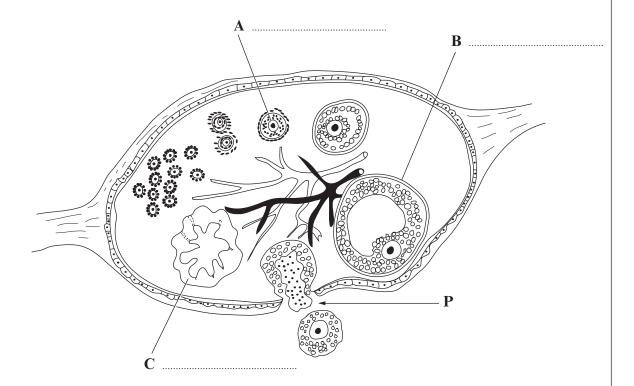
•••••	
•••••	

(ii)	The cod fisheries have been closed for nearly 20 years but there has been change in the phenotype and no population recovery. Suggest why there has little change in the phenotype and no population recovery.

 Otho	er than restricting the mesh size of nets, give two other methods which are used to ent overfishing. [2]	
 (i)	One solution to overfishing is aquaculture or fish farming. Give two problems associated with producing fish in this way. [2]	
(ii)	Wild trout are diploid (2n). Some trout used in fish farming are triploid (3n).	
	Suggest why triploid trout are infertile. [4]	
	Suggest why triploid trout are infertile. [4]	

3.

PMT

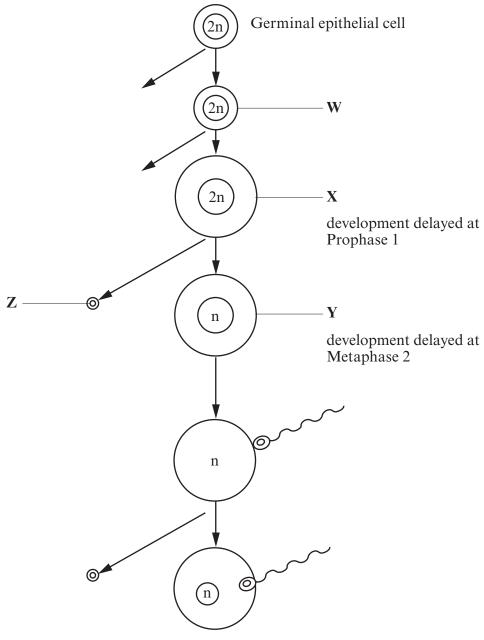

1075	010007

(i) 	What is meant by the ter	m 'sex linkage'?	
(ii)	Complete the following g from haemophilia, could did not suffer from haem for the allele which cause	genetic diagram to show how have a son with haemophilia ophilia. Use the symbols X ^H es haemophilia.	v parents who did not suff a but also other children wh for the normal allele and Y
	Phenotype of parents	Normal male	Normal female
	Genotype of parents		
	Genotype of gametes		
	Genotype of offspring		
	Phenotype of offspring		

b)	An organism has two gen	nes A and B which are found	on the same chromosome.
		genetic diagram for a cross re no crossing over occurs (co	s between two individuals wite simplete linkage).
	Genotype	AaBb	AaBb
	Genotype of gametes		
	Genotype of offspring		
	Genotype of offspring Ratio of Phenotype		
;)	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed	type DdEe, where the genes D an four different types of phenotypommon than expected and some s.
	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed f the offspring were far more	four different types of phenotype common than expected and some
)	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed f the offspring were far more	four different types of phenotype common than expected and some
	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed f the offspring were far more	four different types of phenotype common than expected and some
······································	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed f the offspring were far more	four different types of phenotype common than expected and some
) 	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed f the offspring were far more	four different types of phenotype common than expected and some
	Ratio of Phenotype In another cross between the are on the same chromo The phenotype of some of the phenotype of the	osome, the offspring showed f the offspring were far more	four different types of phenotype common than expected and some

PMT

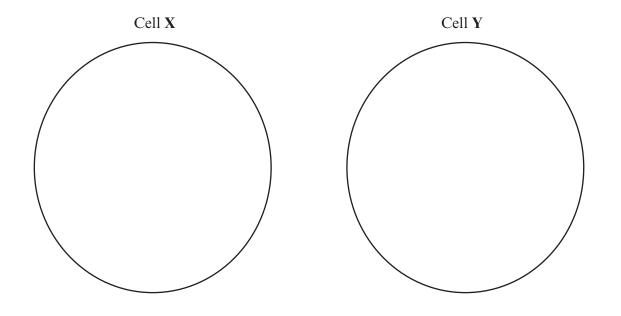
4. The diagram below represents a section through a human ovary showing the developmental stages which lead to ovulation.



- (a) (i) Label the structures $\mathbf{A} \mathbf{C}$ shown on the diagram above. [3]
 - (ii) What process is taking place at **P**? [1]
 - (iii) Name the hormone produced by the developing embryo which prevents the breakdown of structure ${\bf C}$.

© WJEC CBAC Ltd. (1075-01) Turn over.

(b) The diagram below represents the stages of oogenesis and fertilisation.


Examiner only

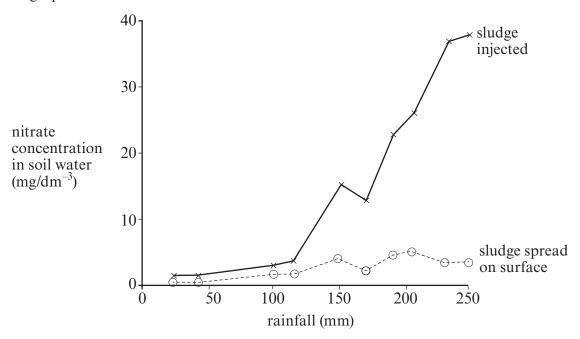
(i)	Name cells W, X, Y and Z shown on the diagram above.	[4]
	W	
	X	
	Y	
	Z	
(ii)	What process is involved in the production of cell W ?	[1]

© WJEC CBAC Ltd.

(iii) In the circles below draw diagrams showing **two pairs** of homologous chromosomes as they would appear in cell **X** on the diagram opposite (Prophase 1) and the appearance of the chromosomes following cell division to form cell **Y** on the diagram opposite (Metaphase 2).

(c)	Suggest why only one functional female gamete is produced as a result of meiosis.	[2]
•••••		

© WJEC CBAC Ltd. (1075-01) Turn over.


5. The treatment of sewage produces sludge as a product. This sludge contains high concentrations of nitrogen compounds such as nitrates and ammonia.

Experiments have been carried out into the leaching of nitrate from grassland to which sludge has been applied. The sludge was applied to two areas of grassland. On one area it was spread onto the surface whilst in the other it was injected at various points across the area.

The rate of leaching was measured by taking samples from the water flowing through the soil and measuring the concentration of nitrate in them after different volumes of rainfall had fallen.

The graph below shows the results obtained.

(a)

· /	State two precautions that should be taken to ensure that the results a	[2]
(ii)	Using the information in the graph describe fully the relationship leaching of nitrate and rainfall.	between the [2]
(ii)		[2]

	(iii) Using the data from the graph opposite, what advice would you give to a farmer as to the best time to apply sludge to the farmer's field for maximum benefit? [1]	Exam onl
(b)	The presence of high nitrate levels in rivers can lead to eutrophication. Briefly describe why eutrophication can result in the death of fish and many invertebrates in a river. [3]	
(c)	Describe and explain what type of crops a farmer could grow to increase the nitrate level in the soil without using fertilisers, such as sludge. [3]	

	 l l
(c) (i	 Give two ways by which energy is lost as it passes from one trophic level to the next. [2]
(i:	Consumption efficiency is defined as the percentage of net production at one trophic level that is consumed by the next. Suggest why the consumption efficiency of herbivores is much lower than that of carnivores. [2]
	cal marine or tropical lake ecosystems generally have one or two more trophic than terrestrial ecosystems. Suggest one reason why this is the case. [1]

7.	Answer Any dia	one of	f the following questions. s included in your answers must be fully annotated.	Ex
	Either,	(a)	Describe how a nucleotide sequence on a DNA molecule results in production of a polypeptide.	the
	Or	(b)	Describe the principles and techniques involved in the cloning of plants. Give the advantages and disadvantages of this process.	[10]
		•••••		
		•••••		
		•••••		
		•••••		
•••••		•••••		

Examiner only

Examiner only

END OF PAPER